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Abstract
In this paper we define two statistics a+(ω) and a−(ω), the positive and negative
atmospheres of a lattice polygon ω of fixed length n. These statistics have the
property that 〈a+(ω)〉/〈a−(ω)〉 = pn+2/pn, where pn is the number of polygons
of length n, counted modulo translations. We use the pivot algorithm to sample
polygons and to compute the corresponding average atmospheres. Using these
data, we directly estimate the growth constants of polygons in two and three
dimensions. We find that

µ =
{

2.638 05 ± 0.000 12, in two dimensions;
4.683 980 ± 0.000 042 ± 0.000 067, in three dimensions,

where the error bars are 67% confidence intervals, and the second error bar in
the three-dimensional estimate of µ is an estimated systematic error. We also
compute atmospheres of polygons of fixed knot type K sampled by the BFACF
algorithm. We discuss the implications of our results and show that different
knot types have atmospheres which behave dramatically differently at small
values of n.

PACS numbers: 02.10.Kn, 36.20.Ey, 05.70.Jk, 87.15.Aa

1. Introduction

Lattice polygons are models of ring polymers with excluded volume and remain a
mathematically rich and unsolved model in statistical mechanics [6, 9, 10]. This model
poses a basic combinatorial question, namely, how many distinct polygons of length n are
there in the hypercubic lattice [15]? This question is related to the combinatorics of self-
avoiding walks. If cn is the number of self-avoiding walks from the origin, of length n, then it
is known that the limit

µ = lim
n→∞ c1/n

n (1)
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exists in d dimensions and µ > 1 in dimensions d > 1 [16]. The constant µ is the growth
constant of the self-avoiding walk, while κ = log µ is the connective constant [4]. Several
basic properties of cn are known; for example, it is known that the limit

µ2 = lim
n→∞ cn+2/cn (2)

exists [27, 28], but the stronger result µ = limn→∞ cn+1/cn remains unproven in the square or
cubic lattice [14] (but is known for non-bipartite lattices such as the triangular lattice [32]). It
has been also established that cn+1 > cn [38] in general. There are overwhelming numerical
and other evidence that

cn = Aµnnγ−1 (1 + o(1)) , (3)

where γ is referred to as the entropic exponent of the self-avoiding walk.
A lattice polygon is an unrooted embedding of the unlabelled cycle graph in the hypercubic

lattice. The length of a lattice polygon is the number of lattice edges its contains. Lattice
polygons have been the subject of much attention over the last 50 years. If pn is the number
of polygons of length n in the hypercubic lattice (counted up to translational invariance), then
the limit

µ = lim
n→∞ p1/n

n (4)

is known to exist [15], and the growth constant of polygons is equal in numerical value to the
growth constant of self-avoiding walks defined in equation (1). It is widely accepted that the
asymptotic growth of pn is of the form

pn = Anα−2µn(1 + o(1)), (5)

where α is the polygon entropic exponent or the specific heat exponent. The function pn

satisfies

lim
n→∞

pn+2

pn

= µ2, (6)

a result due to Kesten [27, 28] (see [32] for a simpler proof).
The numerical value of µ has been estimated in the square lattice using a variety of

different methods, including computer enumeration and series analysis of lattice polygons and
self-avoiding walks, or grand canonical Monte Carlo simulations (in such simulations polygons
are sampled from a Boltzman distribution over the lengths of the polygons or walks). The best
estimates for µ have been obtained from computer enumeration and series analysis.

Series analysis for polygons [25, 26] gives µ and α to very high precision3:

µ = 2.638 158 530 34 ± 0.000 000 000 10, (7)

α = 0.500 0005 ± 0.000 0010. (8)

See also [23] for a slight improvement on these values. The exponent α has also been estimated
from conformal field theory and Coulomb gas methods, which gives the exact value α = 1/2
in two dimensions [35, 36].

Determining µ from self-avoiding walk data is not so successful. The best estimate for µ

and the entropic exponent γ in equation (3) obtained from self-avoiding walk data are

µ = 2.638 158 56 ± 0.000 000 03, (9)

γ = 1.343 745 ± 0.000 015, (10)

as determined in [24], see [13] for additional results.
3 Error bars and confidence intervals are those claimed in the original references. In this paper, we state our own
error bars as 67% statistical confidence intervals.
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Less precise estimates for µ and α are available in three dimensions. Clisby, Liang and
Slade [5] estimated that

µ = 4.684 044 ± 0.000 011, (11)

α ≈ 0.24 (12)

by collecting series data on the self-avoiding walk using the lace expansion. The exponent α

has also been determined by field theoretic means [12, 29], giving α = 0.237 ± 0.002. This
exponent has also been computed to higher precision by first computing the metric exponent ν

of polygons, and then by using the hyperscaling relation dν = 2 − α. However, independent
estimates of α should be made to test the validity of this relation.

In [43] a new statistic called the atmosphere of a self-avoiding walk was introduced. This
statistic was shown (numerically) to converge to the growth constant µ as the length of the
walk increases, and it is possible to determine estimates of µ and γ using canonical Monte
Carlo simulation (of fixed length self-avoiding walks) [31].

We define the atmosphere of an (oriented) self-avoiding walk as the set of edges which
may be appended onto its last vertex to extend the walk by one step while maintaining self-
avoidance. Denote the size of the atmosphere of a walk w by a(w). Then the mean atmosphere
of walks of length n is given by

〈a(w)〉n = cn+1/cn. (13)

We shall often abuse our notation by using the term ‘atmosphere’ to refer to both the atmosphere
of the walk, and to the cardinality of the set of atmospheric edges. Equation (3) suggests that
〈a(w)〉n can be interpreted as a ‘local estimate’ of µ. Assuming that cn has an asymptotic
form given by equation (3), then

〈a〉n = µ

(
1 +

γ − 1

n
+ o(1/n)

)
. (14)

Consequently, by obtaining precise estimates of the mean atmosphere of self-avoiding walks
at various fixed lengths, estimates of both µ and γ were obtained

µ = 2.638 16 ± 0.000 06, γ = 1.345 ± 0.002. (15)

These results verify digits obtained by computer and series enumeration [13] above in
equation (9).

Previously, Monte Carlo estimates for µ and γ have been made using grand canonical
Monte Carlo algorithms which samples self-avoiding walks from a distribution over their
lengths. The most well-known such algorithm is the Beretti–Sokal algorithm [3]. This
algorithm has produced estimates of the connective constant as follows [37]:

µ = 2.638 164 ± 0.000 014, (16)

with error bars a combined 95% statistical confidence interval and an estimated systematic
error due to uncertainties in the model. More recently the [11, 42] PERM algorithm has been
used to find precise estimates of µ and γ in three dimensions and higher.

In section 2 of this paper, we define a new statistic for polygons which plays the same role
as the atmosphere statistic in walks. We show that the mean atmospheres of a polygon can be
used to estimate µ and α in equation (5). Data were collected for polygons on the square and
cubic lattices in two and in three dimensions, and by analysing the data (see section 3), we
estimate that

µ = 2.638 05 ± 0.000 12, α = 0.532 ± 0.027 (17)
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in two dimensions, and

µ = 4.683 980 ± 0.000 042 ± 0.000 067,

α = 0.248 ± 0.016
(18)

in three dimensions. The statistical error bars are 67% statistical confidence intervals, and the
second error bar in the three-dimensional estimate of µ is an estimated systematic error.

The estimate in three dimensions compare well to estimates in the literature. For example,
[17] reported an (unpublished) estimate µ = 4.683 907 ± 0.000 022 due to A J Guttmann,
while the best published estimate is due to self-avoiding walk enumeration using the lace
expansion [5]. This gives µ = 4.684 043 ± 0.000 012. The estimates in equation (18) above
were obtained using relatively modest computer resources, and are consistent with those in
[5].

In section 4, we shift our attention to knotted polygons. The atmospheric statistic can be
used to make numerical estimates of the ratios pn+2(K)/pn(K) of the number of polygons
of length n + 2 and length n, and of knot type K. If the entropy of a polygon of length n is
defined by log pn(K), then the logarithm of the ratio pn+2(K)/pn(K) is the relative entropy
of the polygon, and is a measure of the change in entropy with increasing n. For example, in
figure 8 we plot numerical estimates of the ratio pn+2(∅)/pn(∅) for unknotted polygons. The
data increase at small n and quickly settles down to a constant. The increase at small n implies
that the rate of increase in log pn(∅) increases at small n. This is in contrast with polygons
of fixed non-trivial knot type, as illustrated in for example in figure 9 for trefoils. The rate of
increase in log pn(31) decreases with increasing n at small values of n before settling down
to a constant within numerical variation. These data also indicate that the growth constant
of a knotted polygon of fixed knot type is independent of knot type, but that the approach of
[pn(K)]1/n to µK is from below for unknots, and from above for knotted polygons of fixed
non-trivial knot type. We make some final comments in section 5, and in the appendix we
show how the atmosphere statistic can be generalized to interacting models of polygons. This
technique gives a method for directly estimating the limiting free energy of an interacting
polygon.

2. Atmospheres of polygons

Let ω be a polygon, and let e be an edge in the polygon. Incident with e are 2(d − 1) unit
squares in the d-dimensional hypercubic lattice. Each of these unit squares S has at least one
edge (e) in ω. We say that S is part of the positive atmosphere of ω if it has exactly one edge
(e) in ω and is otherwise disjoint with ω. In this event, one may change ω so that it traverses
the other three edges in the boundary of S (see figure 1). Since these edges are disjoint with
ω, a new self-avoiding polygon is obtained, which has length increased by two.

It is also possible that a unit square S incident with ω has exactly three boundary edges
in ω. These three boundary edges form a three step walk in a �-conformation. If e is the
middle of the edges in this three step walk, then we say S is a negative atmospheric square
of ω incident with e. The collection of all such negative atmospheric squares incident with ω

forms the negative atmosphere of ω. The positive and negative atmospheres of a polygon are
illustrated in figure 2.

The action of adding edges to a polygon at a positive atmospheric square, or deleting
edges at a negative atmospheric square, sets up a correspondence between polygons of length
n and of length n + 2. Observe that the addition of two edges at a positive atmospheric square
as in figure 1 changes that positive atmospheric square into a negative atmospheric square.
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Figure 1. The atmosphere of a polygon: by adding two edges to the polygon around the square
on the left, a polygon is found which has length increased by two. The collection of such squares
incident with a polygon is its positive atmosphere. On the other hand, by instead deleting two
edges to remove the square, we obtain a polygon which has length reduced by two. The collection
of such squares incident with a polygon is its negative atmosphere.

Figure 2. The atmosphere of a two-dimensional polygon. The positive atmosphere is composed
of the darker shaded unit squares. The negative atmosphere is composed of the lighter shaded
unit squares. By adding two edges in the polygon so that it includes three edges of a positive
atmosphere square, a new polygon is obtained which includes the atmospheric square as part of
its negative atmosphere. By removing two edges from the polygon so that a negative atmospheric
square is removed, a new polygon is obtained which includes the atmospheric square as part of its
positive atmosphere.

Similarly, if edges are deleted to cut a negative atmospheric square from a polygon as in
figure 1, then that negative atmospheric square is changed into a positive atmospheric square.

To examine this correspondence between negative and positive atmospheres, define
pn(a+, a−) to be the number of lattice polygons of length n with a+ positive atmospheric
squares, and a− negative atmospheric squares. Observe that each polygon has at least two
positive atmospheric squares located on the edges with lexicographic most and least midpoints.
There are some polygons with zero negative atmospheric squares, for example, any polygon
that is a geometric rectangle with sides longer than 2 in lengths has no negative atmospheric
squares.

The total number of ways that we can extend the length of a polygon by two edges in this
way is

∑
a+,a− a+pn(a+, a−), and the result is in each case a polygon of length n + 2. Each

polygon of length n + 2 obtained in this way has at least one negative atmospheric square, and
is the image of exactly a− polygons if it has a− negative atmospheric squares. In other words,
each polygon of length n + 2 with a− negative atmospheric squares are counted a− times by
the sum

∑
a+,a− a+pn(a+, a−). Hence

∑
a+,a−

a+pn(a+, a−) =
∑
a+,a−

a−pn+2(a+, a−), (19)
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Figure 3. Polygons of length n can be mapped to polygons of length pn+2 by adding edges around
an atmospheric square. In this schematic diagram, polygons of length n are mapped to polygons
of length n + 2 along the arrows. Observe that each arrow corresponds to a positive atmospheric
square on a polygon counted by pn, or to a negative atmospheric square on a polygon counted by
pn+2. Each polygon of length n may be mapped to a number of different polygons of length n + 2
by adding the edges round a positive atmospheric square. The total number of arrows is equal to
the number of ways edges can be added around positive atmospheric squares on polygons of length
n. Conversely, by removing edges from a negative atmospheric square in a polygon of length n+ 2,
a polygon of length n+2 is mapped to a polygon of length n. In the diagram above, moving against
each arrow corresponds to the removal of edges from a negative atmospheric square. There may be
some polygons of length n + 2 without negative atmospheres. It follows that the number of arrows
can be counted by either considering the addition of edges around positive atmospheric squares on
polygons of length n, or by considering the removal of edges around negative atmospheric squares.
This observation gives equation (23).

where both sums are over all values of a+ � 0 and a− � 0 since
∑

a+,a− pn(a+, a−) = pn.
Observe that the sums in equation (19) give the number of arrows in figure 3; in the first case
these are counted from the positive atmospheres of polygons of length n and in the second
case from the negative atmospheres of polygons of length n + 2.

We proceed by defining the mean positive atmosphere of a polygon of length n by

〈a+〉n =
∑

a+,a− a+pn(a+, a−)

pn

(20)

and the mean negative atmosphere of the polygon of length n by

〈a−〉n =
∑

a+,a− a−pn(a+, a−)

pn

. (21)

Comparison of this with equation (19) shows that

〈a+〉n = 〈a−〉n+2
pn+2

pn

. (22)

This may be rearranged to
pn+2

pn

= 〈a+〉n
〈a−〉n+2

. (23)

As n → ∞ this converges to µ2 (see equation (6). Hence, estimating the ratio of atmospheres
on the right-hand side for a range of values of n, and then extrapolating in n, will give an
estimate of µ2.

Define the average positive atmosphere per edge by 〈a+/n〉n (and similarly for 〈a−/n〉n).
Kesten’s pattern theorem [27, 28] shows that both 〈a+/n〉n and 〈a−/n〉n are bounded as
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Table 1. Polygon atmospheres in two dimensions. The estimates for 〈a+/a−〉n are modified by
putting a− = 1 whenever the negative atmosphere of a polygon is empty. In addition, observe that
these raw data give two times 〈a+〉n and 〈a−〉n.

n 〈a+/a−〉n 2〈a+〉n 2〈a−〉n Ratio

10 5.3623 ± 0.0098 15.7175 ± 0.0145 3.4264 ± 0.0064 4.587 ± 0.013
16 7.374 ± 0.017 23.257 ± 0.023 4.1136 ± 0.0076 5.5668 ± 0.0179
20 8.095 ± 0.022 28.905 ± 0.031 4.8489 ± 0.0098 5.961 ± 0.019
30 8.654 ± 0.029 43.513 ± 0.050 6.9189 ± 0.0142 6.289 ± 0.021
40 8.449 ± 0.026 58.459 ± 0.051 9.0830 ± 0.0156 6.4361 ± 0.0167
50 8.173 ± 0.023 73.544 ± 0.055 11.2410 ± 0.0177 6.5425 ± 0.0152
60 7.932 ± 0.021 88.713 ± 0.064 13.4015 ± 0.0198 6.6196 ± 0.0146
80 7.6280 ± 0.0153 119.014 ± 0.071 17.725 ± 0.022 6.7145 ± 0.0124

100 7.4566 ± 0.0132 149.376 ± 0.078 22.094 ± 0.025 6.7609 ± 0.0112
120 7.3372 ± 0.0116 179.590 ± 0.091 26.494 ± 0.028 6.7785 ± 0.0106
150 7.2690 ± 0.0099 225.207 ± 0.099 32.940 ± 0.031 6.8369 ± 0.0095
200 7.1776 ± 0.0091 300.817 ± 0.121 43.887 ± 0.037 6.8544 ± 0.0086
250 7.1152 ± 0.0080 376.339 ± 0.140 54.834 ± 0.042 6.8632 ± 0.0079
300 7.1047 ± 0.0068 452.416 ± 0.147 65.627 ± 0.044 6.8937 ± 0.0069
350 7.0935 ± 0.0067 528.410 ± 0.167 76.401 ± 0.051 6.9163 ± 0.0069
400 7.0598 ± 0.0061 603.730 ± 0.177 87.424 ± 0.053 6.9058 ± 0.0063
500 7.0458 ± 0.0056 755.49 ± 0.21 109.128 ± 0.063 6.9230 ± 0.0060
600 7.0334 ± 0.0052 907.12 ± 0.23 130.852 ± 0.068 6.9324 ± 0.0054
700 7.0082 ± 0.0049 1057.95 ± 0.25 152.839 ± 0.077 6.9220 ± 0.0052
800 7.0103 ± 0.0046 1209.63 ± 0.27 174.445 ± 0.083 6.9342 ± 0.0049
900 7.0039 ± 0.0045 1361.13 ± 0.30 196.200 ± 0.093 6.9375 ± 0.0049

1000 6.9970 ± 0.0034 1512.48 ± 0.25 218.150 ± 0.076 6.9332 ± 0.0036
1200 6.9877 ± 0.0032 1815.37 ± 0.29 261.681 ± 0.086 6.9373 ± 0.0034
1500 6.9822 ± 0.0030 2269.94 ± 0.33 326.991 ± 0.099 6.9419 ± 0.0032
2000 6.9794 ± 0.0026 3027.62 ± 0.38 435.611 ± 0.118 6.9503 ± 0.0028
2500 6.9761 ± 0.0021 3784.80 ± 0.39 544.403 ± 0.117 6.9522 ± 0.0022
3000 6.97005 ± 0.00194 4541.54 ± 0.43 653.443 ± 0.132 6.9502 ± 0.0021
3500 6.97188 ± 0.00181 5299.21 ± 0.47 761.955 ± 0.146 6.9548 ± 0.0020
4000 6.96912 ± 0.00168 6056.95 ± 0.51 870.833 ± 0.153 6.9554 ± 0.0019
5000 6.96873 ± 0.00157 7571.18 ± 0.59 1088.313 ± 0.179 6.9568 ± 0.0017

n → ∞. If one assumes that these averages approach constants as n → ∞, then
equation (23) may be approximated by

pn+2

pn

≈ 〈a+/n〉n
〈a−/n〉n , (24)

where the right-hand side converges to a constant as n → ∞ in which case the approximation
becomes exact.

The averages 〈a±/n〉 = 〈a±〉/n can be collected using the pivot algorithm for polygons
at fixed values of n [30]. Since each atmosphere is computed by examining each edge of a
polygon, it follows that atmospheres are typically O(nd) in a d-dimensional polygon of length
n. In contrast, the atmospheres defined for the self-avoiding walk in [20, 43] are O(d).

3. Connective constants of polygons on the square and cubic lattice

The pivot algorithm for polygons [22, 30] was used to collect atmospheric data in two
dimensions (see table 1) and in three dimensions (see table 4). The lengths of polygons
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Figure 4. The ratio [〈a+〉n/〈a−〉n]1/2 plotted against 1/n in the square lattice. Extrapolation of
the data to infinite n is done by a regression with the model 2d − 1 to estimate µ.

was set at values between 10 and 5000, and for each value of n (except n = 700 and n = 5000,
where we did more iterations), the number of iterations (an iteration is an attempted pivot
move) was set at N × 105n with data collected every �n/10	 iterations. This produced a time
series of length 106N , which we analysed to compute averages. Autocorrelation times along
the time series were computed using a windowing scheme (see [31]) and were found to be
of lengths less than 40 along the time series in the worst cases. The values of N used were
N = 2 for n < 1000, N = 3 for 1000 � n < 2500 and N = 4 for 2500 � n � 5000. To
reduce initialization bias in our data, we discarded the first n2 attempted pivots in each run.
For example, for n = 1000 we discarded the first 106 iterations. Our simulations took some
weeks of CPU time on desktop workstations.

3.1. Results in two dimensions

Data collected in two dimensions are tabulated in table 1. The ratios of the atmospheres were
also collected, and these are plotted in figure 4 against 1/n. It appears that the ratio of the
atmospheres quickly approaches µ2 with increasing n.

The data in table 1 were analysed using weighted least squares. Assuming that
pn = Anα−2µn(1 + o(1)) suggests fitting the data to the model

〈a+〉n
〈a−〉n = µ2 ((n + 2)/n))a2 , (25)

where a2 is a constant. One would expect that a2 = α − 2. This model requires a nonlinear
least-squares analysis and did not behave well numerically.

Instead, we took logarithms on both sides of the last equation to get the model

log

( 〈a+〉n
〈a−〉n

)
= log µ2 + a2 log ((n + 2)/n)) + a3/n2, (model 2d − 1) , (26)

where one extra parameter a3 was inserted to control for deviations in the data for small values
of n. Observe that log((n + 2)/n) = 2/n + O(1/n2) so that this is a linear model in 1/n.

Linear least-squares analysis of the data in table 1 using model 2d − 1 (equation (26)
gave acceptable fits: we tracked the weighted least-square error χ2(nmin) as a function of the
smallest value of n (nmin) included in the analysis. This statistic is distributed as a χ2-statistic

8
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Table 2. Least-squares analysis results: model 2d − 1.

nmin log µ2 a2 χ2(d f ) Level

10 1.939 885 ± 0.000 078 −1.314 ± 0.019 68.0(26) 100%
16 1.940 070 ± 0.000 081 −1.451 ± 0.025 28.3(25) 70.6%
20 1.940 081 ± 0.000 083 −1.460 ± 0.029 28.1(24) 74.4%
30 1.940 092 ± 0.000 087 −1.470 ± 0.036 28.1(23) 78.5%
40 1.940 065 ± 0.000 090 −1.444 ± 0.043 27.4(22) 80.2%
50 1.940 078 ± 0.000 093 −1.458 ± 0.049 27.2(21) 83.6%

on df degrees of freedom, where df is the number of data-points minus the number of
parameters in the model. A fit is statistically acceptable if the least-square error is acceptable
at the 95% level.

The results of the analysis are given in table 2. For nmin = 16 the fit is acceptable at
the 70.6% level. In this case log µ2 = 1.940 070 ± 0.000 081 (67% statistical confidence
interval). Increasing nmin first to 20 and then in steps to nmin = 50 gave similar fits. For
nmin > 10 all the regressions gave a value of log µ2 within the statistical confidence interval
of the regression at nmin = 16, and the value of log µ2 for larger values of nmin settled down
to a stable value within the confidence interval of its value at nmin = 16. We took the result at
nmin = 16 as our best estimate for µ; dividing by 2 and exponentiating gives

µ = 2.638 04 ± 0.000 11, (27)

with a 67% statistical confidence interval.
The value of the parameter a2 in model (26) is consistently in the vicinity of −1.5; this

agrees with the expectation that a2 = α −2 = −3/2. With increasing nmin the estimate settles
on a value that includes −3/2 well inside its confidence interval.

Estimates of the ratio a+/a− were also collected in our simulations. Since this ratio is
undefined if a− = 0, we modified a− by putting a− = 1 whenever the negative atmosphere
of a polygon is zero. Since the probability that a polygon will have no negative atmospheric
squares goes to zero quickly with increasing n, this slight modification is only relevant at small
values of n, and consequently did not disturb the average at higher values of n. Our estimates
are also listed in table 1. These data were similarly analysed using the three parameter model

log

〈
a+

a−

〉
n

= log µ2 + a2 log ((n + 2)/n)) + a3/n2, (model 2d − 2). (28)

The results of the regression are given in table 3. Again, the least-squares error was tracked
as a function of nmin. The regressions only became statistically acceptable at the 95% level
for nmin = 40, and good fits were obtained for nmin = 50 and higher. By taking the results at
nmin = 50 as our best estimates, we get

µ = 2.638 07 ± 0.000 12 (29)

with a 67% statistical confidence interval. This demonstrates that the statistic (a+/a−) can
also be tracked and analysed to obtain estimates for µ.

There are no a priori reasons to accept any one of the above results as our best estimate,
so we averaged them and took the largest confidence interval as an error bar:

µ = 2.638 05 ± 0.000 12. (30)

This result is consistent with the estimates in equations (7), (9), (15) and (16).
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Figure 5. Scatterplot of Pn = n(log(
〈a+〉
〈a−〉 ) − log µ2)/2 against 1/n. Error bars have been left

away for clarity. µ2 was set equal to its least-squares value in equation (30). The data points
accumulate around −1.5; this is consistent with α = 1/2.

Table 3. Least-squares analysis results: model 2d − 2.

nmin log µ2 a2 χ2(d f ) Level

10 1.938 531 ± 0.000 072 4.286 ± 0.018 1454(26) 100%
16 1.938 146 ± 0.000 076 4.582 ± 0.025 1307(25) 100%
20 1.938 544 ± 0.000 077 4.242 ± 0.029 1012(24) 100%
30 1.939 493 ± 0.000 081 3.375 ± 0.037 236(23) 100%
40 1.939 925 ± 0.000 084 2.951 ± 0.043 56.4(22) 100%
50 1.940 094 ± 0.000 087 2.775 ± 0.049 27.3(21) 83.9%
60 1.940 138 ± 0.000 090 2.726 ± 0.055 25.5(20) 81.8%
80 1.940 137 ± 0.000 095 2.727 ± 0.065 25.5(19) 85.6%

The exponent α in equation (5) can also be estimated from our data. By equation (26) we
observe that (

log

( 〈a+〉n
〈a−〉n

)
− log µ2

)
= a2 log ((n + 2)/n)) + O(1/n), (31)

and hence by approximating log((n+2)/n) ≈ 2/n and plotting Pn = n
(

log
( 〈a+〉n

〈a−〉n
)−log µ2

)/
2

against 1/n, the Y-intercept should be a2 = α − 2 as 1/n → 0+. These data are plotted in
figure 5 as a scatter plot for clarity. The data points accumulate close to −1.5; this is consistent
with the expectation that α = 1/2 in this model. A weighted least-squares fit to the data in
figure 5 using the model

n

2

(
log

( 〈a+〉
〈a+〉

)
− log µ2

)
= (α − 2) +

a1

n
+

a2

n2
(32)

gives a statistically acceptable regression at the 78% level. The estimate for the specific heat
exponent is 2 − α = −1.468 ± 0.027 with a 67% confidence interval. Thus, we estimate
α = 0.532 ± 0.027. Hyperscaling in models of self-avoiding walks is exhibited in the scaling
relation 2 − α = 1/φ = dν in d dimensions, where ν is the metric exponent and φ is the
crossover exponent. Conformal field theory and Coulomb gas techniques show that the exact
value for the metric exponent is ν = 3/4, and thus φ = 2/3 and α = 1/2 by hyperscaling
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Table 4. Atmospheres in three dimensions. The estimates for 〈a+/a−〉n are modified by putting
a− = 1 whenever the negative atmosphere of a polygon is empty. In addition, observe that these
raw data give two times 〈a+〉n and 〈a−〉n.

n 〈a+/a−〉 2〈a+〉 2〈a−〉 Ratio

10 15.7918 ± 0.0171 45.4003 ± 0.0146 3.2247 ± 0.0046 14.079 ± 0.025
16 21.476 ± 0.028 70.117 ± 0.023 4.0795 ± 0.0055 17.188 ± 0.029
20 23.512 ± 0.038 87.117 ± 0.031 4.7959 ± 0.0069 18.165 ± 0.033
30 25.370 ± 0.044 130.611 ± 0.040 6.7335 ± 0.0085 19.397 ± 0.031
40 25.339 ± 0.042 174.729 ± 0.048 8.7046 ± 0.0096 20.073 ± 0.028
50 24.723 ± 0.039 219.059 ± 0.055 10.7366 ± 0.0110 20.403 ± 0.027
60 24.224 ± 0.035 263.598 ± 0.059 12.7390 ± 0.0120 20.692 ± 0.025
80 23.458 ± 0.028 352.742 ± 0.069 16.8055 ± 0.0142 20.990 ± 0.022

100 23.077 ± 0.024 442.079 ± 0.079 20.8720 ± 0.0163 21.180 ± 0.021
120 22.862 ± 0.021 531.484 ± 0.089 24.9350 ± 0.0184 21.315 ± 0.020
150 22.6420 ± 0.0184 665.734 ± 0.096 31.049 ± 0.021 21.4414 ± 0.0176
200 22.4215 ± 0.0163 889.395 ± 0.116 41.285 ± 0.026 21.5428 ± 0.0164
250 22.3361 ± 0.0144 1113.621 ± 0.134 51.457 ± 0.028 21.6418 ± 0.0143
300 22.2695 ± 0.0138 1337.490 ± 0.153 61.650 ± 0.032 21.6949 ± 0.0138
350 22.2022 ± 0.0125 1561.350 ± 0.167 71.914 ± 0.035 21.7113 ± 0.0129
400 22.1758 ± 0.0118 1785.610 ± 0.181 82.100 ± 0.037 21.7492 ± 0.0121
500 22.1269 ± 0.0105 2233.66 ± 0.21 102.529 ± 0.042 21.7856 ± 0.0110
600 22.0821 ± 0.0099 2682.08 ± 0.23 123.025 ± 0.048 21.8011 ± 0.0104
700 22.0839 ± 0.0093 3130.35 ± 0.25 143.325 ± 0.053 21.8409 ± 0.0099
800 22.0469 ± 0.0090 3578.04 ± 0.28 163.868 ± 0.058 21.8349 ± 0.0095
900 22.0442 ± 0.0088 4026.85 ± 0.31 184.236 ± 0.064 21.8570 ± 0.0093

1000 22.0312 ± 0.0066 4474.69 ± 0.26 204.668 ± 0.053 21.8632 ± 0.0070
1200 22.0170 ± 0.0062 5371.08 ± 0.30 245.510 ± 0.060 21.8772 ± 0.0066
1500 21.9997 ± 0.0056 6715.97 ± 0.33 306.839 ± 0.068 21.8876 ± 0.0060
2000 21.9897 ± 0.0050 8957.19 ± 0.39 408.922 ± 0.081 21.9044 ± 0.0053
2500 21.9753 ± 0.0040 11198.70 ± 0.39 511.163 ± 0.080 21.9083 ± 0.0042
3000 21.9696 ± 0.0037 13439.49 ± 0.44 613.286 ± 0.091 21.9139 ± 0.0040
3500 21.9627 ± 0.0036 15680.75 ± 0.48 715.523 ± 0.101 21.9151 ± 0.0038
4000 21.9652 ± 0.0033 17923.15 ± 0.52 817.535 ± 0.111 21.9234 ± 0.0037
5000 21.9545 ± 0.0031 22404.56 ± 0.59 1022.050 ± 0.125 21.9212 ± 0.0033

[35, 36]. These values are consistent with the numerical estimate of α above, which includes
1/2 within its 95% confidence interval.

3.2. Results in three dimensions

We performed similar simulations and calculations in three dimensions. The data collected in
three dimensions are displayed in table 4.

The model

log

( 〈a+〉n
〈a−〉n

)
= log µ2 + a2 log ((n + 2)/n)) + a3/n2, (model 3d − 1) (33)

was examined for the ratios of the atmospheric data in table 4. Regression data for this model
are listed in table 5. Even for nmin = 10 the regression is acceptable at the 95% level on 26
degrees of freedom. In this case, the best estimate obtained for µ is µ = 4.683 644±0.000 037.
Increasing the value of nmin to 20 gave 4.683 867±0.000 038, which is outside the error bar at
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Figure 6. The ratio [〈a+〉n/〈a−〉n]1/2 plotted against 1/n in the cubic lattice. Extrapolation of the
data to infinite n is done by a regression with the model 3d − 1 to estimate µ.

Table 5. Least-squares analysis results: model 3d − 1.

nmin log µ2 a2 χ2(d f ) Level

10 3.088 153 ± 0.000 048 −1.654 ± 0.0192 33.4(26) 85%
16 3.088 237 ± 0.000 049 −1.714 ± 0.0136 11.3(25) 0.8%
20 3.088 248 ± 0.000 050 −1.723 ± 0.0158 10.7(24) 0.9%
30 3.088 244 ± 0.000 053 −1.720 ± 0.021 10.7(23) 1.4%
40 3.088 263 ± 0.000 055 −1.737 ± 0.025 9.9(22) 1.2%

nmin = 10. Further increases in nmin did not cause further significant changes in the estimate,
and we take the value at nmin = 20 to be our best estimate,

µ = 4.683 867 ± 0.000 038. (34)

The model

log

〈
a+

a−

〉
n

= log µ2 + a2 log ((n + 2)/n)) + a3/n2, (model 3d − 2) (35)

was also examined. Regression data is given in table 6. The fits were not acceptable for
small values of nmin, but the quality of the regressions increased with increasing nmin and
regressions acceptable at the 95% level were obtained for nmin � 50. In this case the best
estimate obtained for µ is

µ = 4.683 972 ± 0.000 041. (36)

Further increases in nmin to 60 gave 4.684 092 ± 0.000 042, which is outside the error bar at
nmin = 50. Further increases in nmin did not cause further significant changes in this estimate,
and we took the value at nmin = 60 to be our best estimate:

µ = 4.684 092 ± 0.000 042. (37)

There are no a priori reasons to accept any one of the above results as our best
estimate, so we averaged them and took the largest confidence interval as an error bar:
µ = 4.683 980 ± 0.000 042. There is an unknown systematic error due to deficiencies in
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Table 6. Least-squares analysis results: model 3d − 2.

nmin log µ2 a2 χ2(d f ) Level

10 3.087 069 ± 0.000 044 3.2151 ± 0.0099 3459(26) 100%
16 3.086 527 ± 0.000 046 3.6196 ± 0.0142 2678(25) 100%
20 3.086 816 ± 0.000 047 3.3815 ± 0.0163 2239(24) 100%
30 3.087 665 ± 0.000 050 2.631 ± 0.022 640(23) 100%
40 3.088 140 ± 0.000 052 2.176 ± 0.026 80.5(22) 100%
50 3.088 293 ± 0.000 054 2.019 ± 0.029 18.3(21) 36.7%
60 3.088 344 ± 0.000 055 1.964 ± 0.033 11.8(20) 7.6%
80 3.088 317 ± 0.000 059 1.994 ± 0.039 10.8(20) 6.8%

our models. If we take one-half of the absolute distance between the two estimates, then the
systematic error may be estimated as 0.000 067. Thus, we take as our best estimate

µ = 4.683 980 ± 0.000 042 ± 0.000 067, (38)

the result in equation (38), where we add a systematic error of size 0.000 067 to the confidence
interval. This result compares well with the estimate by Clisby, Liang and Slade [5] in
equation (11).

The corrections to the powerlaw and exponential growth in equation (5) are more explicitly
thought to be of the form

pn = Anα−2µn(1 + Bn−� + o(n−�)), (39)

where � is the confluent exponent and B is a constant (see, for example, [32]). In two
dimensions the value of � is numerically close to 1, thus the least-squares analysis for the
two-dimensional data in table 1 would not be influenced by the presence of such a confluent
term. This is not necessary the case in three dimensions, where � ≈ 1/2.

To investigate the effects of a confluent correction on our best estimate in equation (38),
we repeated our analysis with a confluent term present by using the models

log

( 〈a+〉n
〈a−〉n

)
= log µ2 + a2/

√
n + a3/n, (model 3d − 3) (40)

and

log

〈
a+

a−

〉
n

= log µ2 + a2/
√

n + a3/n, (model 3d − 4). (41)

The results of the regressions are given in tables 7 and 8, respectively.
The regression data in table 7 indicate that our numerical data were described well by

this model 3d − 3 in equation (40) with the inclusion of a confluent correction term. The
fits are acceptable starting at nmin = 20, but there is still a drift in the result with increasing
nmin. For values of nmin � 50 we obtain estimates of the parameters which do not exclude
previous estimates outside their error bars; at nmin = 50µ = 4.683 574 ± 0.000 104 and at
nmin = 100, µ = 4.683 82 ± 0.000 14. At n = 120 the result is µ = 4.683 89 ± 0.000 16.
This result is included in the confidence interval of our best estimate in equation (38), and we
conclude that the results in this model is consistent with those obtained from models 3d − 1
and 3d − 2. The confluent correction did not influence our statistical estimate in a systematic
way which would be visible outside the confidence intervals stated above.

We also examined our the data collected for 〈a+/a−〉n using model 3d −4 with a confluent
term. The results are given in table 8. Observe that the regressions were not good until
nmin = 80 and that there is only a slow improvement for values of nmin � 100. While
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Table 7. Least-squares analysis results: model 3d − 3.

nmin log µ2 a2 χ2(d f ) Level

16 3.087 493 ± 0.000 107 0.0494 ± 0.0049 44.9(25) 99.2%
20 3.087 780 ± 0.000 115 0.0314 ± 0.0056 21.5(24) 38.2%
30 3.087 986 ± 0.000 127 0.0191 ± 0.0065 14.0(23) 7.3%
40 3.088 123 ± 0.000 136 0.0102 ± 0.0072 10.1(22) 1.4%
50 3.088 110 ± 0.000 145 0.0111 ± 0.0080 10.1(21) 2.1%
60 3.088 209 ± 0.000 154 0.0042 ± 0.0088 8.4(20) 1.1%
80 3.088 198 ± 0.000 169 0.0050 ± 0.0100 8.4(19) 1.7%

100 3.088 230 ± 0.000 183 0.0026 ± 0.0113 8.3(18) 2.5%
120 3.088 26 ± 0.000 20 0.0004 ± 0.0129 8.1(17) 3.7%

Table 8. Least-squares analysis results: model 3d − 4.

nmin log µ2 a2 χ2(d f ) Level

60 3.090 090 ± 0.000 150 −0.1434 ± 0.0087 78.0(20) 100%
80 3.089 504 ± 0.000 161 −0.1012 ± 0.0098 33.0(19) 97.6%

100 3.089 207 ± 0.000 174 −0.0791 ± 0.0109 22.3(18) 78.1%
120 3.089 012 ± 0.000 188 −0.0641 ± 0.0122 18.6(17) 64.5%
150 3.088 71 ± 0.000 21 −0.0408 ± 0.0141 13.3(16) 34.2%
200 3.088 40 ± 0.000 22 −0.0157 ± 0.0169 9.6(15) 15.5%
250 3.088 46 ± 0.000 27 −0.020 ± 0.020 9.5(14) 20.1%
300 3.088 31 ± 0.000 30 −0.007 ± 0.023 8.9(13) 21.4%

fits became statistically acceptable at nmin = 100, there remained a persistent downwards
drift in the estimate of log µ2. These estimates appear to stabilize around nmin = 200,
which is included in the confidence interval at nmin � 250. If nmin = 300, then obtain
µ = 4.684 01 ± 0.000 23, which is included in the confidence intervals of our best estimate in
equation (38). Thus, we again conclude that ignoring the confluent correction in model 3d −2
did not affect our statistical estimate in a systematic way which would be visible outside the
statistical confidence intervals stated.

As was the case in two dimensions, our data are consistent with the exponent α in
equation (5). By plotting Pn = n

(
log

( 〈a+〉n
〈a−〉n

) − log µ2
)/

2 against 1/n, and by considering
equation (33), it follows that the Y-intercept should be at a2 = α − 2 as 1/n → 0+. The data
are plotted in figure 7 as a scatter plot.

The data points accumulate close to −1.75; this is consistent with the expectation that
α ≈ 0.25 in this model. A weighted least-squares fit to the data in figure 5 using the model

n

2

(
log

( 〈a+〉
〈a+〉

)
− log µ2

)
= (α − 2) +

a1

n
+

a2

n2
(42)

gives a statistically acceptable regression. The estimate for the specific heat exponent is
2 − α = −1.7525 ± 0.0151 with a 67% confidence interval. Increasing nmin in the fit
did not change this estimate outside its confidence intervals, and so our best estimate is
α = 0.248 ± 0.016. These results are consistent with the estimates in [5] where it is estimated
that α is in the range 0.23 to 0.24.

Assuming the hyperscaling relation dν = 2 −α and using the value ν = 0.5874 ± 0.0002
estimated by Prellberg [41] shows that α = 0.2378 ± 0.0006 if hyperscaling applies in this
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Figure 7. Scatterplot of Pn = n(
〈a+〉
〈a−〉 − log µ2)/2 against 1/n. Error bars have been removed for

clarity. µ2 was set equal to its least-squares value in equation (38). The data points accumulate
around −1.77; this is consistent with α ≈ 0.23.

model. This value of α is inside the confidence interval of our estimate for α, and our result
is consistent with hyperscaling in three-dimensional polygons.

4. Relative free energy of knotted polygons

In this section, we turn our attention to polygons in the cubic lattice with fixed knot type.
Knotted polygons have received attention in the literature [33, 34, 40, 44] as models of knotted
polymers.

We define pn(K) to be the number of lattice polygons of length n and with knot type K,
(counted up to translations in the lattice). The atmospheres of a polygon of fixed knot type
are defined as in section 2, and following the arguments leading up to equation (23), it follows
that

pn+2(K)

pn(K)
= 〈a+(K)〉n

〈a−(K)〉n+2
. (43)

Observe that the knot type of the polygon is not changed by adding edges around positive
atmospheric squares, or by removing edges around negative atmospheric squares.

There is little known about pn(K). In particular, it is normally assumed that

pn(K) ≈ CKn(αK−2)(µK)n, (44)

where µK is a growth constant, αK is an entropic exponent of polygons of knot type K and
CK is a constant. Simulations indicate that αK = α∅ + NK where NK is the number of prime
components in the knot K and that α∅ = α, where α∅ is the entropic exponent of unknotted
polygons, and α ≈ 0.25 is the entropic exponent of polygons in the cubic lattice [39].

We define the entropy of polygons of length n and knot type K by

En(K) = log pn(K) (45)

and the relative entropy is then given from equation (43) by

En+2(K) − En(K) = log〈a+(K)〉n − log〈a−(K)〉n+2. (46)

15



J. Phys. A: Math. Theor. 41 (2008) 105002 E J J van Rensburg and A Rechnitzer

◦◦
◦◦◦
◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

Figure 8. The ratio [pn+2(∅)/pn(∅)]1/2 against n for unknotted polygons. Note that the data
appear to be monotonically increasing to a limiting value.

Kesten’s pattern theorem for polygons (see [44]) suggests that 〈a+(K)〉n/n → α+ and
〈a−(K)〉n/ → α− as n → ∞, where α+ and α− are constants. Taking n to infinity in
the last equation shows that

lim
n→∞ (En+2(K) − En(K)) = log(α+/α−). (47)

In other words, a plot of [pn+2(K)/pn(K)]1/2 against n will approach the ratio (α+/α−)1/2.
Such a plot is given in figure 8 for K = ∅, the unknot.

The entropy of knotted polygons of knot type K is given by

En(K) =
n−2∑

m=nmin

(Em+2(K) − Em(K)) + Enmin(K), (48)

where nmin is the minimum number of edges necessary to realize a polygon of knot type K in
the cubic lattice [7, 19] (this is the minimal edge number of the knot type). This shows that

En(K) =
n−2∑

m=nmin

[
log

( 〈a+(K)〉n
〈a−(K)〉n+2

)]
+ Enmin(K). (49)

The absolute entropy of knotted polygons for n = nmin is an issue which have been addressed
for polygons of knot type 31 (trefoils) by Diao [8]. In this case, p24(31) = 3496 since
nmin = 24 for trefoils, and thus the entropy is E24(31) = log 3496. By computing the area
under the curve log (〈a+(K)〉n/〈a−(K)〉n+2) and adding the entropy at nmin, the entropy of
knotted polygons at larger values of n can be determined. We did not follow this approach,
but instead focused on determining the relative entropies of knotted polygons.

Unknotted polygons were sampled in the grand canonical ensemble by using the BFACF
algorithm [1, 2] which is known to be ergodic for polygons of fixed knot types in the cubic
lattice [18, 21]. Polygons of fixed knot type K were sampled along a Markov Chain for 2×109

iterations with data collected every 200 iterations for a time-series of length 107 of positive
and negative atmospheres.

The data along the time series were binned according to length, and then were analysed
at each fixed length to estimate 〈a+(K)〉n and 〈a−(K)〉n. Throughout the simulations, the
parameter of the BFACF algorithm was set close to its critical value to obtain enough data at
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Figure 9. The ratio [pn+2(31)/pn(31)]1/2 against n for polygons with knot type the trefoil. In
contrast with the data in figure 8, the statistic appears to be monotonically decreasing with n.
Observe that n � 24, since the polygons with knot type 31 have length at least 24 edges.

large values of n (up to n = 500). These calculations did not produce uncorrelated data at
neighbouring values of n, but statistical error bars at any given value of n were small, and plots
of the data show reasonably smooth curves.

In the case of unknotted polygons (see figure 8) it is known that the limit

µ∅ = lim
n→∞ [pn(∅)]1/n (50)

exists via a concatenation argument [44]. Thus, one may expect that

lim
n→∞

[
pn+2(∅)

pn(∅)

]
= µ2

∅. (51)

This remains an open question, even though figure 8 provides strong evidence in its favour.
While the data in figure 8 quickly settles down close to µ∅ for (say) n > 50, it is an increasing
curve indicating that relative entropy (equation (46) increases steeply with n for small values
of n.

In figure 9 data for the trefoil knot is plotted. The limit

µ31 = lim sup
n→∞

[pn(31)]
1/n (52)

is not known to exist, but we give strong numerical data in figure 9 that

lim sup
n→∞

[
pn+2(31)

pn(31)

]
= µ2

31
(53)

exists as a limit. In addition, the data suggest that any difference in the values of µ∅ and µ31

will be small. This is consistent with previous data suggesting that µ∅ = µ31 [39]. Figure 9
also show that the relative entropy of polygons with knot type 31 decreases with increasing n.
This is opposite to behaviour for the unknot in figure 8, and it seems likely that the limit (53)
approaches µ2

31
from above, while the limit (51) approaches µ2

∅ from below.
In figure 10, curves are plotted for the unknot and for compounded trefoils against n. The

starting points of the curves increases with the number of knot components in each knotted
polygon, since the number of edges required to realize the knots, nmin, increases with the
number of components. The data are plotted for the unknot (∅), the trefoil (31), the square
knot

(
3+

1#3−
1

)
, the granny knot

(
3+

1#3+
1

)
and a compound knot with three trefoil components of
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Figure 10. The ratio [pn+2(T )/pn(T )]1/2 against n for polygons with knot types the unknot (∅),
trefoil (31), the square knot (3+

1 #3−
1 ), the granny knot (3+

1 #3+
1) and a compound knot with three

trefoil components of the same chirality (3+
1 #3+

1 #3+
1). Observe the marked difference at small n

between the granny and square knots—the granny knot has much more relative entropy than the
square knot at low values of n.

Figure 11. The ratio [pn+2(T )/pn(T )]1/2 against n for polygons of six crossing knot types. The
most relative entropy is found in 61 and the least in the square knot and 62, for small values of
n. Observe that the square knot and 62 has virtually the same change in relative entropy with
increasing n.

the same chirality
(
3+

1#3+
1#3+

1

)
. Observe the marked difference at small n between the granny

and square knots. The granny knot has much more relative entropy than the square knot at
low values of n.

In figures 11 and 12 data are given for a collection of prime knots. The data in figure 12
are for prime knots to six crossings, for n ∈ [0, 150], while these data are also included in
figure 11 for a larger collection of prime knots, for n ∈ [0, 75]. The larger scale on the X-axis
improves the resolution of the data in these graphs.

It is noticeable that the ratios approach (within numerical precision) the same limiting
curve with increasing n in these graphs. More interesting are the differences between different
knot types for small values of n—there are marked and persistent differences between knots
with the same minimal crossing numbers (for example 51 and 52), and the ratio pn+2(K)/pn(K)
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Figure 12. The ratio [pn+2(T )/pn(T )]1/2 against n for knotted polygons with crossing number up
to ten crossing knot types. Relative entropy at small values of n is large for 74, 81 and 73, amongst
these knot types.

can differ by factors of as large as four or five for different knot types. Most remarkable though
there are individual differences between different knot types; each knot type appears to have
its own characteristic profile in these graphs, and some (such as 74) presents anomalously
large ratios close to its minimal edge number.

5. Conclusions

In this paper, we presented a numerical method for the calculation of relative entropies of
polygons. The method is implemented by defining two statistics (the positive and negative
atmospheres) of a polygon. By calculating these statistics, one may determine ratios of the
form pn+2/pn in models of polygons, and we have done this in order to estimate the growth
constants. For knotted polygons, we are able to determine the relative differences in the
entropy as a function of the knot types.

This technique is quite general, and can be used on other lattice models, for example lattice
walks, trees or animals. In addition, it can also be used to estimate free energies in interacting
models of lattice polygons, for example adsorbing polygons or collapsing polygons. We show
this in the appendix.

In section 3, we estimated the growth constants of polygons in the square and cubic
lattices. We determine µ = 2.638 05 ± 0.000 11 in the square lattice, and µ = 4.683 980 ±
0.000 042 ± 0.000 067 in the cubic lattice. These estimates compare well with estimates by
other means in equations (7) and (9) in the square lattice, and equation (11) in the cubic lattice.
While our results are not as accurate in the square lattice, where series analysis of polygon and
self-avoiding walk data gave µ to very high accuracy, our result is an independent confirmation
of the first digits in those estimates.

In three dimensions our cubic lattice estimate is comparable in accuracy to the recent
estimate by Clisby, Liang and Slade [5] in equation (11). We confirm their estimate to four
decimal places. We believe that the methods here can be used to find µ to even higher accuracy
in the cubic lattice by using more computer resources.

In section 4, we considered the relative entropies of polygons of fixed knot types.
Little is known about such polygons, but our numerical data show that limits such as in
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equations (51) and (53) exists. In addition, we plotted those ratios in figures 9–12, and in each
case found that the relative entropy of an unknotted polygon increasing with increasing n,
while it decreases for a knotted polygon with increasing n. In each case it approaches a
constant. We also observe that different knots have very different relative entropies at small
values of n as in figure 12. This shows that for small values of n these knots will have
different statistical properties, a fact which may influence the physical properties of short
knotted polymer rings.
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Appendix. Atmospheres of interacting polygons

It is possible to generalize atmospheres to models of polygons weighted by a Boltzmann factor
β. Such models are interacting, and typically have a partition function

Zn(β) =
∑
m

pn(m)βm =
∑

ω

βm(ω), (A.1)

where pn(m) is the number of polygons of length n counted up to translational invariance, and
with energy m (the number of contacts, visits, span, or the number of occurrences of any other
property). The second sum is over all polygons ω of length n and with energy m(ω).

In models such as these the construction in figure 1 changes both the length and the
energy of a polygon. Consider a polygon ω of length n and energy m(ω). Similarly, let ν

be a polygon of length n + 2 and energy m(ν). These polygons may be associated with an
atmospheric square as in figure 1; in particular, ω may have a positive atmospheric square
which produces ν (in which case there is a negative atmospheric square in ν which produces
ω). This association is indicated schematically by edges in figure 3, and we call ω and ν linked
by an atmospheric move.

We now assign a weight W(ω → ν) to the edges in figure 3. At this point, we propose to
define these weights by

W(ω → ν) =
{

min{1, βm(ν)−m(ω)}, if ω and ν are linked,

0, otherwise,
(A.2)

but we shall later see that this definition is somewhat arbitrary. Observe that if W(ω → ν) =
βm(ν)−m(ω) � 1, then W(ν → ω) = 1 and vice versa. In fact, the weights satisfy

W(ω → ν) = W(ν → ω)βm(ν)−m(ω) (A.3)

for all possible pairs of walks (ω, ν) (with the length of ω equal to n and the length of ν equal
to n + 2).

Multiply this last equation by βm(ω) and sum both sides over ω and ν; this gives

∑
ω

(∑
ν

W(ω → ν)

)
βm(ω) =

∑
ν

(∑
ω

W(ν → ω)

)
βm(ν), (A.4)

where we keep in mind that W(ω → ν) = 0 if ω and ν and not linked.
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Next define the positive atmosphere of a polygon ω of length n by

α+(ω) =
∑

ν

W(ω → ν), (A.5)

where the sum is over polygons of length n + 2 which are linked to ω. Similarly, define the
negative atmosphere of a polygon of length n + 2 by

α−(ν) =
∑

ω

W(ν → ω), (A.6)

where the sum is over all polygons of length n which are linked to ν. Then equation (A.4)
becomes ∑

ω

α+(ω)βm(ω) =
∑

ν

α−(ν)βm(ν), (A.7)

where we keep in mind that the sum over ω is over polygons of length n and the sum over
ν is over polygons of length n + 2. Dividing the last equation by Zn(β) and noting that the
weighted means of the atmospheres are given by

〈α+〉n =
∑

ω α+(ω)βm(ω)

Zn(β)
, 〈α−〉n+2 =

∑
ν α−(ν)βm(ν)

Zn+2(β)
,

then finally produces the result

Zn+2(β)

Zn(β)
= 〈α+〉n

〈α−〉n+2
≈ 〈α+〉n

〈α−〉n , (A.8)

where one expects the approximation to become more accurate with increasing n.
Implementing the above involves the sampling of polygons from a Boltzman distribution

Dn(ω) = βm(ω)

Zn(β)
(A.9)

on polygons of length n along a Markov chain, say {ωi}Ni=1 (where m(ω) is the energy of ω).
Then one may estimate 〈α+〉n by forming the average

〈α+〉n ≈ 1

N

N∑
i=1

A+(ωi), (A.10)

with the positive atmosphere of ωi has N+(ωi) unit squares and

A+(ωi) =
N+(ωi )∑
j=1

W(ωi → νij ) (A.11)

where νij is the polygon of length n + 2 obtained if the j th atmospheric square is added to
make a polygon of length n+ 2. A similar definition can be used to define the average negative
atmosphere 〈α−〉n.

Finally, we observe that if β = 1 in equation (A.2), then the above reproduces the
atmospheres for unweighted polygons as defined in section 2. Moreover, it appears that the
definition of W(ω → ν) is somewhat arbitrary, any function can be used as long as it satisfies
the condition in equation (A.3). This, for example, implies that one may use alternative
definitions for the atmospheres of a polygon, and still estimate ratios of partition functions. It
is unclear if there are conditions for optimal choices of W .
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